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The magnetic fields that emerge from beneath the solar surface and permeate the solar atmosphere
are the key drivers of space weather and, thus, understanding them is important to human society.
Direct observations, used to measure magnetic fields, can only probe the magnetic fields in the
photosphere and above, far from the regions the magnetic fields are being enhanced by the solar
dynamo. Solar gamma rays produced by cosmic rays interacting with the solar atmosphere have
been detected from GeV to TeV energy range, and revealed that they are significantly affected by
solar magnetic fields. However, much of the observations are yet to be explained by a physical
model. Using a semi-analytic model, we show that magnetic fields at and below the photosphere
with a large horizontal component could explain the ~1 TeV solar gamma rays observed by HAWC.
This could allow high-energy solar gamma rays to be a novel probe for magnetic fields below the

photosphere.

I. INTRODUCTION

It has long been theorised that cosmic rays impacting
the Sun would produce high-energy gamma rays through
hadronic interactions [1] (hereafter SSG). The pioneering
work by SSG considered cosmic-ray reflection by mag-
netic flux tubes, which significantly enhanced the solar
gamma-ray flux compared to the case where the mag-
netic fields are ignored [2].

Solar atmospheric gamma rays were first detected
by EGRET [3], but precision observation was only
made possible by the Fermi space gamma-ray telescope.
Ref. [4] showed that the observed flux is much higher
than the SSG prediction [1] in the 0.1-10 GeV energy
range. Later, Refs. [5-8] confirmed this up to around
100 GeV. Furthermore, solar gamma rays also exhibit a
hard spectrum, large time variation that anticorrelates
with solar activity [5, 6, 8], a spectral dip in the energy
spectrum [6], and nontrivial time-dependent gamma-ray
morphology [8, 9]. Recently, solar gamma rays were de-
tected for the first time by HAWC [10] in the TeV range
with a soft spectral index of about —3.6.

In terms of modeling efforts, Refs. [11, 12] implemented
the PFSS [13-16] corona magnetic field model in parti-
cle propagation and interaction simulation suites to com-
pute the solar gamma-ray flux. While both calculations
showed that corona magnetic fields can significantly af-
fect gamma-ray production and could plausibly account
for most of the observed flux below 10 GeV, the observed
flux above 100 GeV remains unexplained. Ref. [17, 18]
connected the cosmic-ray Sun shadow and the cosmic-
ray induced solar emissions. Ref. [19] hypothesized that
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the Sun could be a TeVatron to explain the high-energy
emission. Using 3D MHD simulations, Ref. [20] sug-
gested a pressure-magnetic field relation for computing
the cosmic-ray interaction in the solar atmosphere. Most
recently, Ref. [21] considered magnetic flux tubes and flux
sheets, showing an impressive agreement in flux and spec-
tral shape with data from ~ 10 GeV to ~ 1TeV, though
the flux at TeV falls short by a factor of a few under the
chosen set of fixed parameters.

Despite all these efforts, there is a lack of concrete the-
oretical understanding on the production of solar gamma
rays. Given the complexity of solar magnetic fields and
the vast cosmic-ray energy scale involved (from sub-GeV
to beyond TeV), a complete description of solar gamma-
ray production may seem daunting without investing sig-
nificant effort into detailed simulations and modeling.
However, as we argue in this work, given a set of rea-
sonable assumptions, we can identify the dominant effect
responsible for the gamma-ray production at the high-
energy limit. In particular, we show that horizontal sub-
photospheric internetwork magnetic fields are likely re-
sponsible for the observed ~TeV solar gamma rays.

II. THE NEED FOR STRONG FIELDS

In this work we exclusively discuss steady solar
gamma-ray emission; transient emission, such as those
associated with solar flares [22-26], has only been ob-
served up to a few GeV [27] and are all removed for
Fermi solar gamma-ray analyses (E.g., Refs [5-8].) There
are also leptonic components, such as inverse Comp-
ton [2, 3, 28-32] and synchrotron [33, 34] emission by
cosmic-ray electrons interacting with Sunlight or solar
magnetic fields, but they have completely different mor-
phology and thus can be easily distinguished from the
hadronic disk component.

Solar atmospheric gamma rays (also called the disk
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component) are produced dominantly through hadronic
channels, when secondary particles (such as neutral pi-
ons) decay into gamma rays. Typically, the produced
gamma rays have energy about 10% of that of the pri-
mary cosmic rays, £, ~ 0.1E,. The fact that HAWC
observed TeV solar gamma rays implies that cosmic rays
up to 10 TeV must be strongly affected by solar magnetic
fields. Considering the Larmor radius (L) versus energy,
E LB L B

~

e e el 1
20TeV ~ Ry G 10°km kG’ (1)

one can see that at least 1kG field strength is needed in
order to affect ~10TeV cosmic rays while confining the
physical scale to be around 103 km.

To give some context for this 103km length scale,
Figure 1 shows the matter density as a function of
depth [35, 36], defined to be zero at the photosphere and
increases towards the center of the Sun. Given the den-
sity profile, one can estimate the gamma-ray production
efficiency by computing the vertical optical depth toward
the center of the Sun 7, = mipadr7 where p and m,, are

the matter density and proton mass, respectively. In this
work, we take the proton-proton cross section, o, to be
about 31mb [37], and we ignore the modest increase of
the cross section toward high energy. In addition, as
depth increases, it is increasingly more difficult for the
gamma rays to escape the Sun. The combined gamma-
ray production and escape efficiency can then be approxi-
mated by 7,e” 7", as the exponential factor approximates
the parent particle’s attenuation and the escape proba-
bility of the produced gamma rays. This approximation
is justified as the photon radiation length [38] is only
slightly longer than the proton interaction length. Both
T, and T,e~ " are shown with the right axis of Figure. 1.
We can see that the 102-10% km depth scale mentioned
above corresponds to the peak of the 7,67 which high-
lights the typical depth required for maximal gamma-ray
production efficiency. Incidentally, this length scale is
also approximately the size of a granule, the convective
cell at the solar surface.

One potential site for finding the 1kG fields is
sunspots. However, at a given time, sunspots only oc-
cupy a small fraction of the solar surface, thus unlikely
to affect solar gamma-ray production at a great capacity.
At much smaller scales, kG fields can form in the quiet
Sun in intergranular lanes. Recently, the effect of the ver-
tical network fields in flux tubes and intergranular lanes
were investigated in Ref. [21] by assuming that cosmic
rays follow the open field lines high in the atmosphere
into these structures and considering the cosmic rays re-
flected by the magnetic bottle effect. With a fixed choice
of parameters, the flux and the spectral shape agrees well
with the data, though it falls below the HAWC observa-
tion at TeV by a factor of a few. This indicates that
network fields are likely important for the gamma-ray
production for a wide energy range.

In this work, we look at a completely different magnetic
field configuration by turning our eyes to another poten-
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FIG. 1. Solar density model from Baker [35] and Vernazza [36]
(blue solid line). We note that these two models and the den-
sity solution by Ref. [39] (red dashed line) overlaps just below
the photosphere and agree excellently with each other. In or-
ange lines, we also show the vertical optical depths, showing
that a few hundred km below the photosphere is the most
optimal depth for producing solar gamma rays (see text for
details).

tial source of kG fields: horizontal internetwork fields

below the photosphere.

IIT. THE ROLE OF SOLAR INTERNETWORK
MAGNETIC FIELDS

The atmosphere of the Sun (photosphere, chromo-
sphere, and Corona) shows a diverse range of magnetic
phenomena [40—42]. In the photosphere, it can be di-
vided into active and Quiet regions. Active regions
famously host strong magnetic fields features, e.g., in
Sunspots. The quiet regions, though once thought to
be non-magnetic, is now known to be fully magnetic [43]
(the so-called Quiet Revolution), and could even domi-
nate the magnetic energy of the Sun [44].

The magnetic fields in the quiet regions come from
network and internetwork regions (see Ref. [45, 46] for
reviews). The network regions outline the shape of
the granular and supergranular cells, while the inter-
network regions represent the cell interiors. The in-
ternetwork fields, which have typical field strength of
O(100) G at the solar surface, have a large horizontal
component [44, 45, 47-49] and are suggested to be caused
by local dynamo from the ubiquitous convective mo-
tion [46, 50-52]. Given the large coverage of the inter-
network regions and that the convective motions below
the surface could produce similar fields (but at strengths
determined by the local energy equipartition between ki-
netic and magnetic energy), we consider their role in
gamma-ray production.



For solar gamma-ray production, horizontal fields are
likely to be efficient, as cosmic rays can be reflected as
long as they stay in the coherent field region, then ob-
servable gamma rays can be produced when cosmic rays
interact after they are reflected.

As we limit our attention to the TeV gamma rays, we
can also safely ignore the processes that affect mostly
lower energy cosmic rays or are expected to be subdom-
inant. For example, the interplanetary magnetic fields
affect how cosmic rays propagate from interstellar space
to the surface of the Sun [53], but only affect gamma rays
around and below 10 GeV [4, 54]. Typical corona mag-
netic fields [16], as shown in Ref. [11, 12], are not strong
enough to significantly affect >TeV cosmic rays.

A. A toy model of the horizontal internetwork
fields

We use a simplified model to investigate the ef-
fect of horizontal internetwork magnetic fields on solar
gamma-ray production. At the solar surface, the typi-
cal O(100) G horizontal field strength [44, 45, 47-49] is
comparable to the kinetic energy density of the fluid.
For reference, with density around 3 x 10~7 g/cm?® and
flow speed around 3km/s, the equiparition field is around
580 G. We thus model horizontal field strength below the
photosphere following this assumption,

|B(r)| = f/4mp(r)a(r)?, (2)

where p is the density, r is the radial distance, x is the
flow speed, and we consider f a free parameter in this
model, with f? being the fraction of the kinetic energy
over to magnetic energy (f = 1 represents the equipar-
tition case). Though we consider f < 1 as an physically
reasonable representation of the field strengths obtain-
able by local dynamo action (e.g. [55]), we also inves-
tigate some larger values to mimic the rise of magnetic
field from lower depths of the convection zone to inject
field into the sub-photospheric region.

The speed amplitude can be estimated by convection
models [39, 56, 57], inferred from simulations [58], or in-
directly probed through surface observation and helio-
seismology [59]. For our toy magnetic field model, we
obtain the speed amplitude as a function of depth from
Unno, Kondo, and Xiong [39]. Fig. 2 right axis shows the
velocity amplitude from this model, which is consistent
with that from global and local simulations (see Fig. 4 of
Ref. [60]).

Figure 2 shows the magnitude of the magnetic fields
we used in our horizontal field model, following Eq. (2).
Above the photosphere, the magnetic fields get weaker
and become more complicated. In the spirit of this pa-
per, we consider two cases to estimate the uncertainties
associated with magnetic fields above the photosphere.
One is that we extrapolate the field strength linearly to
1 G at 1250 km above the photosphere while keeping the
field direction (labeled as |B(—1250)| = 1 G, dashed lines

10°¢ =
f=15 5 unno
- f=1.0 5
0 - 1
104 f_ f=0.7 g :10
F f=0.5 = i
— 103k =03 :
O g »
= g
= 2L - -
5 107 e ] -
E —- - ke
I A Pl 8
@ 101ETT_s--7T +10° 2
100;— ]
-1 ] e,
10 102 103 104

Depth + 1250km

FIG. 2. (Left axis) Magnetic field models used in this cal-
culation. The photosphere is located at a depth of 1250 km.
Above the photosphere, the |B(—1250)] = 1G case extrap-
olates the field to 1 G, while the |B(< 0)| = 0 case sets the
field to be zero. (Right axis) The flow speed model used in
this work from Ref. [39].

in Fig. 2); the second case is that we ignore the fields com-
pletely above the photosphere (labeled as |B(< 0)| = 0).
These two models roughly bracket the two extreme effects
of magnetic fields above the photosphere: one suppresses
cosmic rays from reaching the photosphere and one have
no effect on that.

B. Cosmic ray orbit simulation

Once the magnetic field model is specified, we can solve
for trajectories of particles that go into the Sun, which
is necessary for calculating the interaction probabilities
of these particles and hence the gamma-ray production
efficiencies. We solve the particle trajectories using the
Lorentz force with the following assumptions: (1) The
horizontal fields are coherent within the convection cell,
and the cell is always large enough to contain our cosmic-
ray particles; (2) particle trajectories are not affected by
other factors, such as interactions; and (3) the cosmic
rays are made of protons only. (The effect of nuclei on
the flux is estimated separately below.)

The protons are injected at 1250 km above the photo-
sphere, and is assumed to be isotropic. This is in part jus-
tified as Refs. [11, 12] show that corona fields have a small
effect on the gamma-ray production at TeV. At the injec-
tion point, a set of downgoing trajectories are simulated,
assuming equal probability in pointing directions. In
practice, only the hemisphere towards the Sun is needed,
as the other half will simply escape. The anisotropy
induced by the corona field may affect the gamma-ray
production when coupled to the sub-photospheric fields,
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FIG. 3. An example of the orbit simulation, showing 15 of the
368 tracks used for the calculation for the |B(—1250)] = 1G
case with f =1 and 10 TeV proton energy. The dashed lines
are the tracks projected to the z = —2.5 x 10® km plane.

however. We defer this to future studies.

Figure 3 shows the particle trajectories obtained fol-
lowing the above assumptions, and by solving the equa-
tion of motion:

dp I

—=a(FxB), (3)
where p'is the particle momentum, E is the particle veloc-
ity in unit of speed of light, and ¢ is the particle charge.
The |B(—1250)] = 1 G model is used with f = 1 and
the particles have an energy of 10 TeV. A total of 368
down-going trajectories are solved for each energies, pre-
scribed using the healpy package with Nside = 8. This
corresponds to 368 equal-solid angle sky areas, each cov-
ers a sky area of about (7.3deg)?. For each trajectory,
labeled by the solid angle 2, we obtain its total optical
depth along the track, 7(E,, Q) = [ mipadf, where £ is
the track length element.

Figure 4 shows gamma-ray efficiency factor for the
tracks of the |B(—1250)| = 1G and |B(< 0)] =0 cases,
respectively. The efficiency factor is defined as by

T(Ep, Q) = 7(E,, Qe "EnD (4)

using the optical depth solutions obtained from particle
trajectories above. Given the field geometry, the par-
ticles will always be reflected and hence contribute to
the gamma ray production. We leave subtle cases, such
as particles interacting before reflection, etc, for future
numerical follow ups. The exponential factor in Eq. 4
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FIG. 4. Colored lines show the efficiency factor T = 7e™ 7 as a
function of cosmic-ray proton energies for different downgoing
trajectories. The black solid line is the zenith-weighted sum
of the efficiencies [ cos§TdS2. The top panel represents the
|B(—1250)] = 1 G case, and the bottom panel corresponds to
the |[B(< 0)] =0 case.

approximates the effectiveness of particle attenuation in
high-optical depth scenarios.

The solid lines in Fig. 4 are the zenith-weighted
sum f cosfre~7df). Here we can see the main differ-
ences between the two magnetic field models. For the
|B(—1250)| = 1 G case, the efficiency is suppressed at low
energies as cosmic rays can be reflected off the Sun before
reaching sufficient column density to interact. This sup-
pression is especially significant for particles with small
inclination angles.

The efficiency also drops off at high energies due to
the e~7 factor. The efficiency peak (1/e) is located at
higher energies for the less inclined trajectories as they
transverse the shallower part of the atmosphere. For the
|B(< 0)] = 0 case, as the particles only experience the
magnetic fields after they enter the photosphere, even low
energy particles could accumulate sufficient column den-
sity in the high density atmosphere. And similarly, less
inclined particles contributes to the efficiency at higher
energies.

IV. GAMMA-RAY FLUX PRODUCTION

Given the orbit information, we can estimate the
gamma-ray production semi-analytically. We first write
down the emissivity following the delta function approxi-



mation from Ref. [37]. The emissivity here is the number
of photons produced per energy per surface area per in-
coming solid angle,

dN 2¢ -
——(E,,Q) = Npue— E E.Q
i B ) = Nt [ apTB.0)
o, (E)

x /2 2’
Eﬂ'_mﬂ'

where Ny, is the nuclear enhancement factor, K, =
0.17, Ewin = Ey + m2/4E,, E = m, + E; /K., and
®,(E),) is the cosmic-ray proton flux, for which we use the
analytic double break expression from Ref. [61], which
is a fit of cosmic-ray data from 0.1 TeV to 100 TeV at
Earth position. At this energy, we expect the effect of
cosmic-ray modulation to be negligible [54]. The nuclear
enhancement factor Ny, takes into account the enhanced
gamma-ray production due to the presence of nuclei in
the cosmic rays and the target [62, 63]. The only relevant
species to be considered is Helium, which is < 10% in
both cases. We follow Ref. [2] and take the enhancement
factor as a constant of 1.8.

The total photon flux is then obtained by integrating
Eq. (5) over the solid angle and the surface area, 47 R?,
divided by 47 D?, hence,

dF R2 AN
= Fopyp— Qcos—(E,,Q),
dE D2 / d CosngdedA( ), (6)

where Fy,, is the surface fraction that the cosmic rays
would encounter the internetwork fields, and cos @ takes
the projection effect between the surface area element
and the cosmic-ray incoming angle into account. Here we
have taken the cosmic-ray flux to be isotropic at 1250 km
above the photosphere.

Figure 5 shows the computed solar gamma-ray spectra
for f =0.3, 0.7, and 1.5, and Fj,; = 0.3. Considering the
|B(—1250)| = 1 G case, at lower energies, the gamma-ray
production are suppressed compared to the |B(< 0)| =0
case. At higher energies, the additional magnetic fields
provides extra deflections that shift the efficiency factor
towards higher energies, thus making the |B(—1250)| =
1G case higher.

From Fig. 5, we can see that horizontal internetwork
magnetic fields could explain the HAWC 6-yr observa-
tions with a reasonable choice of parameters f =~ 0.7
and Fy,, ~ 0.3. We note that these two parameters
are somewhat degenerate if only considering the results
above 1TeV.

V. CONCLUSION AND DISCUSSION

In this work, we provide the first physical model
that can fully explain the HAWC TeV solar observation.
We show that horizontal sub-photospheric internetwork
fields, an extension of those seen at the photosphere,
could be strong and ubiquitous enough to reflect ~TeV
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FIG. 5. Gamma ray flux produced by cosmic rays reflecting
on the horizontal internetwork fields, for f = 0.3, 0.7, and
1.5. The flux is directly proportional to the surface fraction
Foury [Eq. (6)], which is taken to be 1 in this figure. Dot-
ted lines and solid lines correspond to the |B(< 0)] = Oand
|B(—1250)| = 1Gecases, respectively. The Fermi-LAT data
at the solar minimum (2008-2010) and 9-year (2008-2017)
averaged flux data [6] are shown for comparison. The re-
cent HAWC results [10] are shown in thick boxes, with black
solid line being the 6-year (2014-2021) combined result, blue
dashed line correspond to solar max. (2014-2017), and red
dashed line correspond to the solar min. (2018-2021) It can
be seen that our model could reasonably explain the HAWC
data, e.g., with f ~ 0.7 and Flsyr ~ 0.3.

cosmic rays and generate the observed solar gamma rays.
Our model is simple and has few parameters, as the mag-
netic field strength can be reasonably connected to the
kinetic energy of the fluid through the scaling parameter
f. Another parameter is the fraction of the Sun that are
covered by the horizontal fields, Fy,,. A reasonable choice
of parameters f ~ 0.7 and Fy, ~ 0.3 could explain the
HAWC 6-yr observations, for instance.

Nevertheless, our model has some shortcomings that
likely can only be addressed with detailed numerical in-
vestigations with more realistic setup. For instance, we
assume that the particles traverse the same convection
cell with the coherent field direction, which is probably
a good assumption for nearly vertical trajectories, but
less so for the ones with small incident angles that could
travel across cells. Particles traveling across cells may
encounter vertical fields in cell boundaries and different
horizontal field orientations in other cells, which would
likely prolong the time the particle stays in the photo-
sphere, and could soften the spectrum at high energies.
A more realistic convection cell model with different sizes
and magnetic field orientations would be needed to ad-
dress this. In addition, the details of particle shower



development in the Sun under magnetic fields can only
be tackled in a numerical setup, which could affect the
gamma-ray production yield at lower energies substan-
tially.

We focus on the TeV energy range, which allows us
to ignore effects from weaker magnetic fields. To fully
explain the solar gamma-ray observation from TeV down
to the GeV energy range, a comprehensive model that
includes solar modulations, corona magnetic fields, and
network magnetic fields is likely necessary. Notably, Sun
shadow observations might be used to isolate the effect of
large scale magnetic fields (e.g., from the corona) [64-68].

While our model could explain the TeV flux data, a
slew of observational features still need to be addressed,
such as time-dependence [5, 6, 8, 10] and surface mor-
phology at the Fermi energy range [7, 9]. For these ob-
servations, one would require a better understanding on
how the related magnetic fields changes in time and sur-
face distribution. The morphology also depends on the
angular distribution of the emitted photons after cosmic-
ray reflection and interaction, which can only be tracked
with numerical simulation.

The understanding of TeV solar gamma rays is also
important for predicting solar atmospheric neutrino
flux [69-72], which could be detectable in neutrino tele-
scopes [73, 74] and has strong implications for new
physics searches (e.g., see Ref. [75-77]).

In summary, we show that TeV gamma rays could be

a novel probe for the magnetic fields and the fluid dy-
namics just under the photosphere, which are difficult
to probe with traditional observational methods. This
will be enabled by continued monitoring of the Sun by
HAWC, LHAASO, and SWGO [78], as well as closer
theory-data connection with future numerical work on
the solar gamma-ray production.
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